pam-2100——野外光合作用研究的*儀器
schreiber教授因發(fā)明pam系列調(diào)制葉綠素?zé)晒鈨x而獲得首屆光合作用協(xié)會(ispr)創(chuàng)新獎
1983年,walz公司*科學(xué)家、德國烏茲堡大學(xué)的ulrich schreiber教授設(shè)計制造了**臺調(diào)制熒光儀——pam-101/102/103,使在自然光下測量葉綠素?zé)晒獬蔀楝F(xiàn)實,解決了科學(xué)界近50年的技術(shù)瓶頸。pam-101/102/103迅速在植物生理、生態(tài)、農(nóng)學(xué)、林學(xué)、水生生物學(xué)等領(lǐng)域得到廣泛應(yīng)用,出版了大量高水平研究文獻。但該儀器比較笨重,不易帶到野外。
1992年,walz公司*科學(xué)家、調(diào)制熒光儀發(fā)明人、德國烏茲堡大學(xué)的ulrich schreiber教授設(shè)計制造了**臺便攜式調(diào)制熒光儀——pam-2000,并且在植物生理生態(tài)學(xué)等科研領(lǐng)域得到廣泛應(yīng)用,此后十幾年中成為zui的調(diào)制熒光儀。
2003年,walz公司在保留pam-2000所有功能和優(yōu)點的基礎(chǔ)上,結(jié)合技術(shù),將pam-2000升級到了pam-2100。
系統(tǒng)描述 pam-2100采用了*的調(diào)制技術(shù)和飽和脈沖技術(shù),從而可以通過選擇性的原位測量葉綠素?zé)晒鈦頇z測植物光合作用的變化。pam-2100的調(diào)制測量光足夠低,可以只激發(fā)色素的本底熒光而不引起任何的光合作用,從而可以真實的記錄基礎(chǔ)熒光fo。pam-2100具有很強的靈敏度和選擇性,使其即使在很強的、未經(jīng)濾光片處理的環(huán)境下(如全日照甚至是10000 μmol m-2 s-1的飽和光強下)也可測定熒光產(chǎn)量而不受到干擾。因此,pam-2100不但適合在實驗室人工控制的環(huán)境下測量,還可以在自然環(huán)境中甚至是強烈的全光照條件下開展野外科學(xué)研究。
pam-2100是非常便攜、強大的測量系統(tǒng),它將各種光學(xué)和電子元件組裝在一個24 cm×10.5 cm×11 cm的外殼中。測量光由655 nm的發(fā)光二極管(led)發(fā)出,可在低頻(600 hz)和高頻(20 khz)間自動切換。光化光(光合生物實際可吸收利用進行光合作用的可見光)由鹵素?zé)簦ò坠猓┗蚣t光led(655 nm)提供。遠紅光(735 nm,促進光系統(tǒng)i迅速消耗掉在pq處累積的電子)由led發(fā)出。
pam-2100的按鍵操作非常簡單?;A(chǔ)測量只需單健操作。數(shù)據(jù)在內(nèi)置電腦中自動分析、存儲并且在顯示屏上顯示。除了“參數(shù)窗”外,在“動力學(xué)窗”還可顯示曲線的實時變化。
pam-2100利用光纖進行信號傳輸。光適應(yīng)葉夾2030-b(產(chǎn)品)上配備微型光量子/溫度傳感器,可在記錄熒光信號的同時,同步記錄光合有效輻射(par)和溫度變化。
pam-2100內(nèi)設(shè)10個標(biāo)準(zhǔn)run(預(yù)先編好的間隔一定時間并按一定順序執(zhí)行特定命令的程序),用戶只需一次按鍵就可進行復(fù)雜的實驗。用戶還可對這些標(biāo)準(zhǔn)run進行編輯得到自己的user-run(數(shù)量不限),來滿足特殊的實驗需要。
pam-2100主機可以直接連接電腦(圓口)鍵盤,在野外現(xiàn)場,可以根據(jù)實驗需要,不需電腦就可以進行特殊程序的編輯。
pam-2100還可以設(shè)定單機操作軟件da-2100自動間隔一定時間執(zhí)行某個run或user-run,而run是可以無限擴展的,因此,可以說pam-2100的功能幾乎可以無限擴展。只要將主機和葉夾(均可固定在三角架上)固定好,按一次按鍵,(人不在現(xiàn)場看守)儀器可以自動進行非常復(fù)雜的測量過程。
此外,pam-2100主機還可以連接電腦顯示器或投影儀放大顯示,非常適合進行教學(xué)使用。
特點
1) 聲譽*的pam-2000的升級版
2) 精巧、準(zhǔn)確、迅速、操作簡便的高級光合作用檢測設(shè)備
3) 可單機操作(采用內(nèi)置電腦,da-2100軟件記錄),可連接外置電腦操作(windows操作軟件pamwin)
4) 便攜式設(shè)計,帶大屏幕液晶顯示屏(可顯示曲線變化)和20個按鍵
5) 強大的數(shù)據(jù)收集、分析和存貯功能
6) 可以預(yù)先編寫和設(shè)定程序,進行特殊研究目的測量
7) 內(nèi)置鋰電池可滿足長時間野外工作需要,并可連接外置12 v電池
8) 多種葉夾可供選擇,設(shè)計的光適應(yīng)葉夾2030-b可同時記錄par和溫度變化
9) 光源選擇:自然光,內(nèi)置光源(提供測量光、光化光、飽和脈沖和遠紅光),可選外置鹵素?zé)艄庠矗ㄌ貏e適合野外研究)
功能
1) 可測熒光誘導(dǎo)曲線的快速上升動力學(xué)o-i-d-p相和o-j-i-p相
2) 可測熒光誘導(dǎo)曲線的慢速下降動力學(xué)并進行淬滅分析(fo, fm, fv/fm, f, fm, fo’, df/fm’, qp, qn, npq, retr等)
3) 可測光響應(yīng)曲線和快速光曲線(rlc)
4) 儀器內(nèi)置一系列標(biāo)準(zhǔn)實驗(run1~run10),用戶可對其進行編輯建立自己的user-run
5) 可在線檢測植物、微藻、地衣、苔蘚等的光合作用變化
6) 單機操作功能強大,特別適合野外操作,實驗室內(nèi)單機操作時可連接電腦顯示器或投影儀放大顯示
應(yīng)用領(lǐng)域
儀器設(shè)計特別適合野外使用,可用于研究光合作用機理、各種環(huán)境因子(光、溫、營養(yǎng)等)對植物生理狀態(tài)的影響、植物抗逆性(干旱、冷、熱、澇、uv、病毒、污染、重金屬等)、植物的長期生態(tài)學(xué)變化等。在植物生理學(xué)、植物生態(tài)學(xué)、植物病理學(xué)、農(nóng)學(xué)、林學(xué)、園藝學(xué)、水生生物學(xué)、環(huán)境科學(xué)、毒理學(xué)、微藻生物技術(shù)、極地植物光合作用研究等領(lǐng)域有著廣泛應(yīng)用。
|
10個標(biāo)準(zhǔn)run
run 1:測量實際量子產(chǎn)量yield(δf/fm’)
run 2:測量zui大量子產(chǎn)量fv/fm
run 3:記錄誘導(dǎo)曲線并進行淬滅分析(采點率10 ms/點)
run 4:記錄誘導(dǎo)曲線并進行淬滅分析(采點率30 ms/點)
run 5:qn 的馳豫動力學(xué)
run 6:快速誘導(dǎo)動力學(xué)o-i-d-p相(線性時間)
run 7:快速誘導(dǎo)動力學(xué)o-j-i-p相(對數(shù)時間)
run 8:光響應(yīng)曲線(需76 min)(稍加編輯即可測量快速光曲線)
run 9:光響應(yīng)曲線(需33 min)(稍加編輯即可測量快速光曲線)
run 10:儀器自檢用戶可根據(jù)實驗需要,自行修改或編制程序;如需幫助,請!
無限擴展的編程功能,單機操作功能更加強大?。?!
|
單機操作時記錄的熒光誘導(dǎo)曲線加淬滅分析、以及相關(guān)熒光參數(shù)的變化 |
|
|
單機操作時記錄的快速熒光誘導(dǎo)動力學(xué)曲線 |
技術(shù)參數(shù)
測量光:紅色發(fā)光二極管(led),650 nm,標(biāo)準(zhǔn)強度0.1 μmol m-2 s-1 par;調(diào)制頻率0.6或20 khz,自動轉(zhuǎn)換。
光化光:
? 紅色led,665 nm,zui大連續(xù)光強600 μmol m-2 s-1 par
? 鹵素?zé)簦?v/20w,zui大連續(xù)光強8500 μmol m-2 s-1 par
飽和脈沖:鹵素?zé)簦?v/20w,zui大飽和閃光強度μmol m-2 s-1 par。
遠紅光:led,730 nm,zui大強度15 w m-2。
信號檢測:pin-光電二極管,帶短波截止濾光片(λ>710 nm);選擇性鎖相放大器(設(shè)計)。
數(shù)據(jù)存儲:128 mb
測量參數(shù):fo, fm, fm’, f, fo’, fv/fm(max. yield), δf/fm’(yield), qp, qn, npq, etr, par和葉溫等。
部分文獻
1. yin cy, berninger f, li cy, 2006. photosynthetic responses of populus przewalski subjected to drought stress photosynthetica 44: 62-68.
2. yaronskaya e, vershilovskaya i, poers y, alawady ae, averina n, grimm2 b, 2006. cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. planta: in press.
3. yang y, sulpice r, himmelbach a, meinhard m, christmann a, grill e, 2006. fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection proc. natl. acad. sci. usa 103: 6061-6066.
4. veres s, tóth vr, láposi r, oláh v, lakatos g, mészáros i, 2006. carotenoid composition and photochemical activity of four sandy grassland species. photosynthetica 44: 255-261.
5. subrahmanyam d, subash n, haris a, sikka ak, 2006. influence of water stress on leaf photosynthetic characteristics in wheat c*rs differing in their susceptibility to drought photosynthetica 44: 125-129.
6. rautenberger r, bischof k, 2006. impact of temperature on uv-susceptibility of two ulva (chlorophyta) species from antarctic and subantarctic regions. polar biology: in press.
7. naidoo g, 2006. factors contributing to dwarfing in the mangrove avicennia marina. annals of botany 97: 1095-1101.
8. lizana c, wentworth m, martinez jp, villegas d, meneses r, murchie eh, pastenes c, lercari b, vernieri p, horton p, pinto m, 2006. differential adaptation of two varieties of common bean to abiotic stress: i. effects of drought on yield and photosynthesis. journal of experimental botany 57: 685-697.
9. häubner n, schumann, karsten u, 2006. aeroterrestrial microalgae growing in biofilms on facades—response to temperature and water stress. microbial ecology: in press.
10. bertamini m, muthuchelian k, nedunchezhian n, 2006. shade effect alters leaf pigments and photosynthetic responses in norway spruce (picea abies l.) grown under field conditions. photosynthetica 44: 227-234.
11. yang x, lu c, 2005. photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. physiologia plantarum 124: 343-352.
12. wodala b, deák z, vass i, erdei l, horváth f, 2005. nitric oxide modifies photosynthetic electron transport in pea leaves. acta biologica szegediensis 49: 7-8.
13. wen x, qiu n, lu q, lu c, 2005. enhanced thermotolerance of photosystem ii in salt-adapted plants of the halophyte artemisia anethifolia. planta 220: 486-497.
14. wen x, gong h, lu c, 2005. heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem ii but not to photosystem i in a cyanobacterium spirulina platensis. plant physiology and biochemistry 43: 389–395.
15. wen x, gong h, lu c, 2005. heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem ii in a cyanobacterium spirulina platensis. plant science 168: 1471–1476.
16. tang y, wen x, lu c, 2005. differential changes in degradation of chlorophyll–protein complexes of photosystem i and photosystem ii during flag leaf senescence of rice. plant physiology and biochemistry 43: 193-201.
17. takabayashi a, kishine m, asada k, endo t, sato f, 2005. differential use of two cyclic electron flows around photosystem i for driving co2-concentration mechanism in c4 photosynthesis. proc. natl. acad. sci. usa 102: 16898-16903.
18. souza gm, ribeiro rv, de oliveira rf, machado ec, 2005. network connectance and autonomy analyses of the photosynthetic apparatus in tropical tree species from different successional groups under contrasting irradiance conditions. revista brasileira de botanica 28: 47-59.
19. siffel p, santrucek j, 2005. diurnal course of photochemical activity of winter-adapted scots pine at subzero temperatures photosynthetica 43: 395-402.
20. shirke pa, pathre uv, 2005. influence of leaf-to-air vapour pressure deficit (vpd) on the biochemistry and physiology of photosynthesis in prosopis juliflora. journal of experimental botany 55: 2111-2120.
21. rassadina vv, usatov av, fedorenko gm, averina ng, 2005. activity of the system for chlorophyll biosynthesis and structural and functional organization of chloroplasts in a plastome en:chlorina-5 sunflower mutant russian journal of plant physiology 52: 606-615.
22. pérez-priego o, zarco-tejada pj, miller jr, sepulcre-cantó g, fereres e, 2005. detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the o2-a band. ieee transactions on geoscience and remote sensing 43: 2860-2869.
23. penuelas j, llusia j, asensio d, munne-bosch s, 2005. linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. plant cell and environment 28: 278-286.
24. kosourov s, makarova v, fedorov as, tsygankov a, seibert m, ghirardi ml, 2005. the effect of sulfur re-addition on h2 photoproduction by sulfur-deprived green algae. photosynthesis research 85: 295-305.
25. jeon m-w, ali mb, hahn e-j, paek k-y, 2005. effects of photon flux density on the morphology, photosynthesis and growth of a cam orchid, doritaenopsis during post-micropropagation acclimatization. plant growth regulation 45: 139-147.
26. ifuku k, yamamoto y, ono t-a, ishihara s, sato f, 2005. psbp protein, but not psbq protein, is essential for the regulation and stabilization of photosystem ii in higher plants. plant physiology 139: 1175–1184.
27. havaux m, eymery f, porfirova s, rey p, dormann p, 2005. vitamin e protects against photoinhibition stress in arabidopsis thaliana. the plant cell 17: 3451-3469.
28. guéra a, calatayud a, sabater b, barreno e, 2005. involvement of the thylakoidal nadh-plastoquinone-oxidoreductase complex in the early responses to ozone exposure of barley (hordeum vulgare l.) seedlings journal of experimental botany 56: 205-218.
29. feild ts, sage tl, czerniak c, iles wjd, 2005. hydathodal leaf teeth of chloranthus japonicus (chloranthaceae) prevent guttation-induced flooding of the mesophyll. plant cell and environment 28: 1179-1190.
30. feild ts, brodribb tj, 2005. a unique mode of parasitism in the conifer coral tree parasitaxus ustus (podocarpaceae). plant cell and environment 28: 1316-1325.
31. favory j-j, kobayshi m, tanaka k, peltier g, kreis m, valay j-g, lerbs-mache s, 2005. specific function of a plastid sigma factor for ndhf gene transc-ription. nucleic acid research 33: 5991-5999.
32. bigras fj, 2005. photosynthetic response of white spruce families to drought stress. new forests 29: 135-148.
33. bertamini m, muthuchelian k, rubinigg m, zorer r, nedunchezhian n, 2005. photoinhibition of photosynthesis in leaves of grapevine (vitis vinifera l. cv. riesling). effect of chilling nights photosynthetica 43: 551-557.
34. xu z-z, zhou g-s, li h, 2004. response of chlorophyll fluorescence and nitrogen level of leymus chinensis seedling tho changes of soil moisture and temperature. journal of environmental sciences 16: 666-669.
35. wilson s, blake c, berges ja, maggs ca, 2004. environmental tolerances of free-living coralline algae (maerl): implications for european marine conservation. biological conservation 120: 283-293.
36. sjögren lle, macdonald tm, sutinen s, clarke ak, 2004. inactivation of the clpc1 gene encoding a chloroplast hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. plant physiology 136: 4114-4126.
37. salvucci me, crafts-brandner sj, 2004. relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. plant physiology 134: 1460-1470.
38. romero hm, berlett bs, jensen pj, pell ej, tien m, 2004. investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in arabidopsis. plant physiology 136: 3784-3794.
39. munné-bosch s, peñuelas j, asensio d, llusià j, 2004. airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. plant physiology 136: 2937-2947.
40. mcelrone aj, forseth in, 2004. photosynthetic responses of a temperate liana to xylella fastidiosa infection and water stress. journal of phytopathology 152: 9-20.
41. lu q, lu c, 2004. photosynthetic pigment composition and photosystem ii photochemistry of wheat ears. plant physiology and biochemistry 42: 395-402.
42. larbi a, abadía a, morales f, abadía j, 2004. fe resupply to fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. photosynthesis research 79: 59-69.
43. ji b-h, zhu s-q, jiao d-m, 2004. a limited photosynthetic c4-microcycle and its physiological function in transgenic rice plant expressing the maize pepc gene. acta botanica sinica 46: 542-551.
44. havaux m, dall"osto l, cuiné s, giuliano g, bassi r, 2004. the effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in arabidopsis thaliana. the journal of biological chemistry 279: 13878-13888.
45. fujibe t, saji h, arakawa k, yabe n, takeuchi y, yamamoto kt, 2004. a methyl viologen-resistant mutant of arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-b irradiation. plant physiology 134: 275-285.
46. ensminger i, sveshnikov d, campbell da, funk c, jansson s, lloyd j, shibistova o, öquist g, 2004. intermittent low temperatures constrain spring recovery of photosynthesis in boreal scots pine forests. global change biology 10: 1-14.
47. d"haese d, vandermeiren k, caubergs rj, guisez y, temmerman ld, horemans n, 2004. non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. journal of theoretical biology 227: 175-186.
48. biemelt s, tschiersch h, sonnewald u, 2004. impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. plant physiology 135: 254-265.